a2 United States Patent

Naumov et al.

US009170836B2

US 9,170,836 B2
Oct. 27, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

SYSTEM AND METHOD FOR
RE-FACTORIZING A SQUARE MATRIX INTO
LOWER AND UPPER TRIANGULAR
MATRICES ON A PARALLEL PROCESSOR

Applicant: Nvidia Corporation, Santa Clara, CA
(US)

Inventors: Maxim Naumov, Santa Clara, CA (US);
Sharanyan Chetlur, Banglore (IN);
Lung Sheng Chien, Santa Clara, CA
(US); Robert Strzodka, Santa Clara, CA
(US); Philippe Vandermersch, Santa

Clara, CA (US)

Assignee: NVIDIA CORPORATION, Santa
Clara, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 501 days.

Appl. No.: 13/737,287

Filed: Jan. 9, 2013

Prior Publication Data
US 2014/0196043 Al Jul. 10, 2014
Int. CI.
GOGF 17/00 (2006.01)
GOG6F 9/46 (2006.01)
GOGF 17/16 (2006.01)
U.S. CL

CPC . GO6F 9/46 (2013.01); GOGF 17/16 (2013.01)

Field of Classification Search
CPC e GOGF 17/16
See application file for complete search history.

SINGLE-INSTRUCTION MULTIPLE-DATA (SIMD) PROCESSOR

(56) References Cited

U.S. PATENT DOCUMENTS

7,181,384 Bl 2/2007 Riggs etal.
7,783,465 B2 82010 Yang
7,822,590 B2  10/2010 Kundert
8,156,457 B2 4/2012 Basile et al.

2006/0265445 Al* 11/2006 Gustavsonetal. ... 708/520
2011/0257955 Al 10/2011 Bertacco et al.
2013/0226535 Al* 82013 Tuan ....cooivviiiininnn. 703/2

OTHER PUBLICATIONS

Ren, L., et al. “Sparse LU Factorization for Parallel Circuit Simula-
tion on GPU”; Department of Electronic Engineering; Tsinghua
National Laboratory for Information Science and Technology;
Tsinghua University; Beijing, China; Design Automation Confer-
ence; Jun. 2-6, 2012; pp. 1125-1130.

Ren, L., et al. “Sparse LU Factorization for Parallel Circuit Simula-
tion on GPU”; Power Point Slide Show; Department of Electronic
Engineering; Tsinghua National Laboratory for Information Science
and Technology; Tsinghua University; Beijing, China; Design Auto-
mation Conference; Jun. 2-6, 2012; 38 pages.

* cited by examiner
Primary Examiner — Zachary K Huson

(57) ABSTRACT

A system and method for re-factorizing a square input matrix
on a parallel processor. In one embodiment, the system
includes: (1) a matrix generator operable to generate an inter-
mediate matrix by embedding a permuted form of the input
matrix in a zeroed-out sparsity pattern of a combination of
lower and upper triangular matrices resulting from a prior LU
factorization of a previous matrix having a same sparsity
pattern, reordering to minimize fill-in and pivoting strategy as
the input matrix and (2) a re-factorizer associated with the
matrix generator and operable to use parallel threads to apply
an incomplete-LU factorization with zero fill-in on the inter-
mediate matrix.
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1
SYSTEM AND METHOD FOR
RE-FACTORIZING A SQUARE MATRIX INTO
LOWER AND UPPER TRIANGULAR
MATRICES ON A PARALLEL PROCESSOR

TECHNICAL FIELD

This application is directed, in general, to parallel proces-
sors (i.e., computers having at least two processors capable of
cooperating to carry out parallel processing) and, more spe-
cifically, to a system and method for re-factorizing a square
matrix into lower and upper triangular matrices on a parallel
processor.

BACKGROUND

Assuming they can be effectively programmed, parallel
processors such as graphics processing units (GPUs) have the
potential to be remarkably adept at processing numerical
algorithms, and particularly algorithms for directly solving
large sparse linear systems.

Sparse linear systems are systems of linear equations with
sparse coefficient matrices. These systems arise in the context
of computational mechanics, geophysics, biology, circuit
simulation and many other contexts in the fields of computa-
tional science and engineering.

The most common general and direct technique to solve a
sparse linear system is to decompose its coefficient matrix
into the product of a lower triangular matrix, ., and an upper
triangular matrix, U, a process called “factorization.” Then,
conventional forward and backward substitution techniques
can beusedto solve the linear systems with [ and U triangular
matrices and thereby obtain the solution of the sparse linear
system.

SUMMARY

One aspect provides a system for re-factorizing a square
input matrix on a parallel processor. In one embodiment, the
system includes: (1) a matrix generator operable to generate
an intermediate matrix by embedding a permuted form of the
input matrix in a zeroed-out sparsity pattern of a combination
of'lower and upper triangular matrices resulting from an LU
factorization of a previous matrix having a same sparsity
pattern, reordering to minimize fill-in and pivoting strategy as
the input matrix and (2) a re-factorizer associated with the
matrix generator and operable to use parallel threads to apply
an incomplete-L.U factorization with zero fill-in (ILUO) on
the intermediate matrix.

Another aspect provides a method of re-factorizing a
square input matrix on a parallel processor. In one embodi-
ment, the method includes: (1) generating an intermediate
matrix by embedding a permuted form of the input matrix in
a zeroed-out sparsity pattern of a combination of lower and
upper triangular matrices resulting from an LU factorization
of a previous matrix having a same sparsity pattern, reorder-
ing to minimize fill-in and pivoting strategy as the input
matrix and (2) using parallel threads to apply an ILUO on the
intermediate matrix.

Yet another aspect provides a SIMD processor. In one
embodiment, the SIMD processor includes: (1) lanes oper-
able to process parallel threads, (2) a pipeline control unit
system operable to control thread processing in the lanes and
(3) a system for employing the lanes and the pipeline control
unit to re-factorize a square input matrix, having: (3a) a
matrix generator operable to generate an intermediate matrix
by embedding a permuted form of the input matrix in a
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zeroed-out sparsity pattern of a combination of lower and
upper triangular matrices resulting from an LU factorization
of a previous matrix having a same sparsity pattern, reorder-
ing to minimize fill-in and pivoting strategy as the input
matrix and (3b) a re-factorizer associated with the matrix
generator and operable to transmit parallel threads to the
pipeline control unit to apply an ILUO on the intermediate
matrix.

BRIEF DESCRIPTION

Reference is now made to the following descriptions taken
in conjunction with the accompanying drawings, in which:

FIG. 1 is a block diagram of a SIMD processor operable to
contain or carry out a system or method for re-factorizing a
square matrix into lower and upper triangular matrices on a
parallel processor;

FIG. 2 is a flow diagram of one embodiment of a system for
re-factorizing a square matrix into lower and upper triangular
matrices on a parallel processor; and

FIG. 3 is a block diagram of one embodiment of a method
of re-factorizing a square matrix into lower and upper trian-
gular matrices on a parallel processor.

DETAILED DESCRIPTION

As stated above, the most common general technique to
solve a sparse linear system is to factorize its coefficient
matrix into the product of lower and upper triangular matri-
ces, L and U, respectively. It is realized herein that existing
techniques are not well-suited to take advantage of the archi-
tecture of a parallel processor, such as a GPU.

Accordingly, introduced herein are various embodiments
of'a system and method for re-factorizing a square matrix into
lower and upper triangular matrices. In general, the various
embodiments are operable to accelerate applications for solv-
ing a set of a sparse linear system taking the form of:

Ax,=f; fori=1,..., K,

where coefficient matrices A, e R, the right-hand-sides
f; eR”, and the solutions x, e R .

Certain embodiments of a system and method are appli-
cable when (1) the sparsity pattern of the coefficient matrices
A,, (2) the reordering to minimize fill-in and (3) the pivoting
strategy used during the factorization remain the same across
all the linear systems. In this case the sparsity pattern of the
resulting lower (L,) and upper (U,) triangular factors for each
of'the linear systems also remains the same. These conditions
frequently arise in the simulation of integrated circuits using
the well-known Simulation Program with Integrated Circuit
Emphasis (SPICE).

In these certain embodiments, LU factorization needs to be
performed only the first time (for i=1). Subsequently, (for i=
2, ..., k) only LU re-factorization needs to be performed.
Since applying the LU factorization on the sparsity pattern of
L, and U, factors generates no additional fill-in, the memory
needed for the re-factorization can be statically allocated.
Therefore, LU re-factorization is in general much faster than
the LU factorization. In some embodiments, re-factorization
can be carried out in tens of seconds or a few minutes on a
modern SIMD processor, whereas factorization may require
many hours.

Thus, it is realized herein that for i=2, . . . , k the coefficient
matrix A, can be embedded in the sparsity pattern of the
zeroed-out lower and upper triangular factors resulting from
the first (i=1) factorization, viz.:

M=L,P+UP+4;,
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where L, @=L, and U,®=U, filled in with zeros. Since the
application of LU factorization on the matrices L, and U, does
not generate additional fill-in, it is realized herein that ILUO
can then be applied to this newly generated intermediate
matrix M, to produce the LU re-factorization of the coefficient
matrix A,.

In certain embodiments, the reordering to minimize fill-in
and pivoting can be accounted for by embedding the per-
muted matrix P7*A *Q, instead of the coefficient matrix A,
so that:

M=LP+U,D+PT4,%Q,

where P7 and Q are the permutation matrices corresponding
to the reordering to minimize fill-in and pivoting used in the
first (i=1) LU factorization.

The problem of LU re-factorization of the coefficient
matrix A, has therefore been recast as that of an ILUO of the
intermediate matrix M,, fori=2, . . ., k. It is realized that the
latter can be effectively carried out on a parallel processor,
such as GPU. Before describing the novel system and method
in greater detail, a representative computing system contain-
ing a GPU will now be described.

FIG. 1 is a block diagram of a SIMD processor 100 oper-
able to contain or carry out a system or method for re-factor-
izing a square matrix into lower and upper triangular matrices
on a parallel processor. SIMD processor 100 includes mul-
tiple thread processors, or cores 106, organized into thread
groups 104, or “warps.” SIMD processor 100 contains J
thread groups 104-1 through 104-J, each having K cores
106-1 through 106-K. In certain embodiments, thread groups
104-1 through 104-J may be further organized into one or
more thread blocks 102. One specific embodiment has thirty-
two cores 106 per thread group 104. Other embodiments may
include as few as four cores in a thread group and as many as
several tens of thousands. Certain embodiments organize
cores 106 into a single thread group 104, while other embodi-
ments may have hundreds or even thousands of thread groups
104. Alternate embodiments of SIMD processor 100 may
organize cores 106 into thread groups 104 only, omitting the
thread block organization level.

SIMD processor 100 further includes a pipeline control
unit 108, shared memory 110 and an array of local memory
112-1 through 112-J associated with thread groups 104-1
through 104-J. Thread execution control unit 108 distributes
tasks to the various thread groups 104-1 through 104-J over a
data bus 114. Cores 106 within a thread group execute in
parallel with each other. Thread groups 104-1 through 104-]
communicate with shared memory 110 over a memory bus
116. Thread groups 104-1 through 104-J respectively com-
municate with local memory 112-1 through 112-J over local
buses 118-1 through 118-J. For example, a thread group 104-J
utilizes local memory 112-J by communicating over a local
bus 118-J. Certain embodiments of SIMD processor 100 allo-
cate a shared portion of shared memory 110 to each thread
block 102 and allow access to shared portions of shared
memory 110 by all thread groups 104 within a thread block
102. Certain embodiments include thread groups 104 that use
only local memory 112. Many other embodiments include
thread groups 104 that balance use of local memory 112 and
shared memory 110.

Having described a representative computing system con-
taining a GPU, various embodiments of the novel system and
method will now be described in greater detail. Various
embodiments of the system and method employ various novel
techniques.

FIG. 2 is a block diagram of one embodiment of a system
for re-factorizing a square matrix into lower and upper trian-
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gular matrices on a parallel processor. A factorizer 210, which
is not part of many of the embodiments of the system, is
operable to receive the square matrix A, as an input matrix
and perform a LU factorization of the matrix to yield a lower
triangular matrix, L.;, and an upper triangular matrix, U, as
well as the reordering to minimize fill-in and pivoting permu-
tations P and Q used in the factorization.

A matrix generator 220 is associated with the factorizer
210 and is operable fori=2, . . ., k to generate the intermediate
matrix M, by embedding the permuted input matrix P7*A *Q
in a zeroed-out sparsity pattern of a combination of lower and
upper triangular matrices L, ©+U,© resulting from the first
LU factorization. A re-factorizer 230 is associated with the
matrix generator 220 and is operable for i=2, . . ., k to use
parallel threads to apply an ILUO on the generated interme-
diate matrix M,.

It is realized herein that row update is essentially a step of
Gaussian elimination, where a reference (pivot) row is scaled
by a multiplier and added to the current row in order to create
zeros below the main diagonal. The multipliers are computed
and stored in place of zeros created by this update. In some
embodiments of the novel system and method, in order to
explore the available parallelism, columns are grouped into
levels instead of rows. It is realized herein that the conven-
tional technique of grouping rows into levels not only is more
intuitive, but also makes the process of finding data depen-
dencies more straightforward. However, it is realized herein
that grouping rows into levels substantially hinders process-
ing speed. It is specifically realized that rows near the bottom
of the matrix tend to have far more nonzero elements than
other rows, making updates of those rows relatively slow. In
contrast, grouping columns into levels often allows us to
achieve a better load balancing of work by more evenly dis-
tributing the computation associated with the bottom rows
across multiple columns. Grouping columns into levels can
result in a significant improvement in processing speed, per-
haps by several orders of magnitude.

Grouping columns into levels also yields another potential
advantage. The bottom right corner of the matrix may be
packaged into dense storage and dense LU factorization
(without pivoting) may be employed to process it. In one
embodiment, the packaging happens only if the bottom right
corner contains enough elements per row to justify the extra
computation in the dense format. However, it is realized
herein that this is often the case.

In other embodiments of the systems and method, the
matrix is kept in a merged Compressed Sparse Row/Com-
pressed Sparse Column (CSR-CSC) format. The merged
CSR-CSC format is composed of both standard CSR and
CSC formats. The CSR format is conventional and contains
an array of matrix values, among other things. The CSC
format is conventional except that, instead of the actual
matrix values, it contains pointers to the values contained in
the CSR format. The merged CSR-CSC format allows the
update that takes place during the ILUO to occur in place with
respect to the single array of values in the CSR format. The
CSC format pointers require no updating.

In yet other embodiments of the system and method, the
analysis phase computes individual grid and block launch
parameters for every level because of a huge difference in the
number of elements per row early and late in the matrix M,.

In still other embodiments of the system and method, the
analysis may schedule two kernel launches per level instead
of'using a single kernel launch to process a level (with a single
thread block in x-dimension per row). If two kernels are
launched, the first kernel may update the multipliers (with a
single thread block in x-dimension per row), and the second
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kernel may update the remaining elements in a row (with
multiple thread blocks in x-dimension per row).

In certain embodiments, during the row update in the LU
re-factorization, a search for the elements of the reference
(pivot) row in the current row, rather than searching for ele-
ments of the current row in the reference (pivot) row, is
undertaken. Searching in this manner yields two potential
advantages. First, if the number of elements in the reference
(pivot) row is “n” and in the current row is “m”, then m=n
given the construction of M,. Thus, the former and the latter
approaches involve O(m*log(n)) and O(n*log(m)) steps,
respectively. Therefore, the latter approach involves fewer
steps and is less computationally expensive. Also, by the
construction of M,, the elements of the reference (pivot) row
are known always to be present in the current row, which
minimizes thread divergence.

FIG. 3 is a flow diagram of one embodiment of a method of
re-factorizing a square matrix into lower and upper triangular
matrices on a parallel processor. The method begins in a start
step 310. In a step 320, the input matrix A | is LU factorized to
yield a lower triangular matrix, L.;, and an upper triangular
matrix, U,, as well as the reordering to minimize fill-in and
pivoting permutations P and Q used in the factorization. In a
step 330, fori=2,. .., kan intermediate matrix M, is generated
by embedding a permuted form of the input matrix P7*A *Q
in a zeroed-out sparsity pattern of a combination of lower and
upper triangular matrices L, ©+U, @ resulting from the prior
LU factorization. In a step 340, parallel threads are used to
apply an ILUO on the generated intermediate matrix M,. The
method ends in an end step 350.

Those skilled in the art to which this application relates will
appreciate that other and further additions, deletions, substi-
tutions and modifications may be made to the described
embodiments.

What is claimed is:

1. A system for re-factorizing a square input matrix on a
parallel processor, comprising:

a matrix generator operable to generate an intermediate
matrix by embedding a permuted form of said input
matrix in a zeroed-out sparsity pattern of a combination
of'lower and upper triangular matrices resulting from an
LU factorization of a previous matrix having a same
sparsity pattern, reordering to minimize fill-in and piv-
oting strategy as said input matrix; and

a re-factorizer associated with said matrix generator and
operable to use parallel threads to apply an incomplete-
LU factorization with zero fill-in on said intermediate
matrix.

2. The system as recited in claim 1 wherein said interme-
diate matrix generator is operable to embed said permuted
form in said sparsity pattern.

3. The system as recited in claim 1 wherein said re-factor-
izer is further operable to performing a symbolic analysis on
said input matrix to group independent nodes representing
columns thereof into levels representing data dependencies
between said nodes.

4. The system as recited in claim 1 wherein said re-factor-
izer is further operable to employ a merged compressed
sparse row-compressed sparse column format in carrying out
said incomplete-L.U factorization with zero fill-in.

5. The system as recited in claim 1 wherein said re-factor-
izer is further operable to compute grid and block launch
parameters particular to each level in defining a configuration
of said parallel threads.

6. The system as recited in claim 1 wherein said re-factor-
izer is further operable to launch said parallel threads as two
concurrent kernels per level of said subsequent matrix, one of
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said kernels operable to update multipliers in said level and
another of said kernels operable to update remaining ele-
ments in said level.

7. The system as recited in claim 6 wherein said re-factor-
izer is further operable with a SIMD processor to launch said
parallel threads.

8. A method of re-factorizing a square input matrix on a
parallel processor, comprising:

generating an intermediate matrix by embedding a per-

muted form of said input matrix in a zeroed-out sparsity
pattern of a combination of lower and upper triangular
matrices resulting from an LU factorization of a previ-
ous matrix having a same sparsity pattern, reordering to
minimize fill-in and pivoting strategy as said input
matrix; and

using parallel threads to apply an incomplete-LU factor-

ization with zero fill-in on said intermediate matrix.

9. The method as recited in claim 8 wherein said embed-
ding comprises embedding said permuted form in said spar-
sity pattern.

10. The method as recited in claim 8 wherein said using
comprises performing a symbolic analysis on said input
matrix to group independent nodes representing columns
thereof into levels representing data dependencies between
said nodes.

11. The method as recited in claim 8 wherein said using
comprises employing a merged compressed sparse row-com-
pressed sparse column format in carrying out said incom-
plete-LU {factorization with zero fill-in.

12. The method as recited in claim 8 wherein said using
comprises computing grid and block launch parameters par-
ticular to each level in defining a configuration of said parallel
threads.

13. The method as recited in claim 8 wherein using com-
prises launching said parallel threads as two concurrent ker-
nels per level of said subsequent matrix, one of said kernels
operable to update multipliers in said level and another of said
kernels operable to update remaining elements in said level.

14. The method as recited in claim 13 wherein said using
comprises employing a SIMD processor to launch said par-
allel threads.

15. A SIMD processor, comprising:

lanes operable to process parallel threads;

a pipeline control unit system operable to control thread

processing in said lanes; and

a system for employing said lanes and said pipeline control

unit to re-factorize a square input matrix, including:

a matrix generator operable to generate an intermediate
matrix by embedding a permuted form of said input
matrix in a zeroed-out sparsity pattern of a combina-
tion of lower and upper triangular matrices resulting
from an LU factorization of a previous matrix having
a same sparsity pattern, reordering to minimize fill-in
and pivoting strategy as said input matrix, and

are-factorizer associated with said matrix generator and
operable to transmit parallel threads to said pipeline
control unit to apply an incomplete-L.U factorization
with zero fill-in on said intermediate matrix.

16. The processor as recited in claim 15 wherein said
intermediate matrix generator is operable to embed said per-
muted form in said sparsity pattern.

17. The processor as recited in claim 15 wherein said
re-factorizer is further operable to performing a symbolic
analysis on said square matrix to group independent nodes
representing columns thereof into levels representing data
dependencies between said nodes.
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18. The processor as recited in claim 15 wherein said
re-factorizer is further operable to employ a merged com-
pressed sparse row-compressed sparse column format in car-
rying out said incomplete-L.U factorization with zero fill-in.

19. The processor as recited in claim 15 wherein said 5
re-factorizer is further operable to compute grid and block
launch parameters particular to each level in defining con-
figuration of said parallel threads.

20. The processor as recited in claim 15 wherein said
re-factorizer is further operable to launch said parallel threads 10
as two concurrent kernels per level of said intermediate
matrix, one of said kernels operable to update multipliers in
said level and another of said kernels operable to update
remaining elements in said level.
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